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ABSTRACT

This report extends the stochastic integral of Ito to allow for a certain

class of anticipating integrands . Probabilistic and computational results con-

cerning this extension are presented . And iterated integrals are discussed .

The motivation for this extension stems from the Ito-Volterra equation .

This equation arises from feedback in the presence of white noise, and cannot

be inverted using classical stochastic integrals. The inversion involving the

extended integrals appears at the end of the report.
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SIGNIFICANCE AND EXPLANATION

In the a na ly s i s  of feedback systems such as coupled electrical circuitry

and economic life cycles , one is led to consider diagrams such as the one shown

below . The box T sianifies a transfer from the input F (e.g. current , in-

come) to the output ~~~. Junction 3 is a step—up or step—down point. Here

either some fract.)on of ~ is diverted for external consumption , or else ~

is scaled up. And the remainder in the loop ~~~, along with an external driving

force E , is used to drive the process.

_ _ _  

F ( t )  

~~~~~~~~ J ~(t)

~~ t ) j

/
If t h e  j u n c t i o n  3 involves a white noise (e.g. thermal noise , stock plans)

then the equation qoverning the process involves a stochastic integral which

cannot be inverted using the classical theory of stochastic integration . Thus

the equation cannot be solved for F .

This report discusses the construction of an extension for the classical

stochastic integral , designed to overcome the above limitation . Included are

ro~~~~rti r ’ ; of this extension , and the subject of iterated stochastic integration .

Tb r~~~T ’ ) r 1 ’ ~ib i 1 i ~~’.’ for the wording and views expressed in this descriptive summary
1i ~~ ; w i t h  F1P~~, and n et  w i t h  t h e  author of this report.



I

A FUBI NI THEOREM FOR ITE R ATED STOC HASTIC INTEGRA LS

Marc A. Berger

§ 1. INTRODUCTION

Shown in the figure below is a typical feedback diagram. The box T signifies a trans-

fer from the input F to the output ~~. For example,

t
( 1. 1 )  F ( t )  f o ( t — T ) F ( t ) d x  , t ) 0

0 —

Junction J is a step-up or step—down point . Here either some fraction of F~ is diverted

for external consumption .

E(t) F ( t )  I 
- -  

~(t)

__—-

or else F~ is scaled up. Thus the remainder in the loop is

(1.2)

If the process uses this remainder ~ to drive itself, along with an external driving force

E, then

(1.3)

combining (1.1), (1.2), (1.3) it follows that the equation governing the system is

t t
(1.4) ~ ( t)  — f a ( t — r ) a ( r ) ~~ ( r ) d r  = f n ( t- ~r ) E ( r ) th , t 0

0 0

Suppose, however, that a is in the form of a noise

Sponsored by the United States Army under Contract No. DAAG29-75—C—0024 and b~’ the Natic’nal
Science Foundation under Grant No. MCS7S—17385 AOl.
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(1.5) a = U +

where z is a white noise. Then (1.4) becomes

~(t) - f ~ (t -i)~~1
(t ) ~~( r )d t  - f a (t-T)a2(t)~~(~ )di~(T)

(1.6)

f o t — r ) E ( i ~ dt,  t > 0
0

where B is a Brownian motion

t
(1.7) 8(t) f z(r)dt , t > 0

0

This equation is an Ito—Volterra equation, the class of which is discussed in §5. The

difficulty lies in the inability to represent the iterates of the operator

(1.8) Tf(t) f a(t-t)a2
(1)f(T )d~ (T) t ) 0

in a similar form . And this is precisely because the integrand in a stochastic integral must

be nonanticipating . Thus there is no meaning to an integral like

t t
(1.9) f if a (t— r1

) a ( r
1— t ) cz 2 (r 1

)d B( r 1
) Ia 2 (r) f(r)dB (r)

O i

Ito (8) has defined an integral

t t
1(t)  f f g(r 1,t 2)d B( r 1

) dB( r 2
)

0 0

where g c L2(iO .t) x (0,tl). His definition there is

t 12
(1.10) 1(t) ff tg (T1,r 2) + g ( t

2
,t

1
) B (t1)dB (r2

), t > 0

This integral behaves in many ways like a single stochastic integral , but not like two

iterated integrals. For example,

t t

. 
f $ (r 1)4d r 2 )dB (r 1

)dB (r 2
)

(1.11)
t t t

= if $ (r)dB (t)1 if ~dr)dB (r)I — f 4 d r )~~( r ) d t , ~ ?. 0
0 0 0

for •,4 , ( t.
2((0,tJ) . Thus, although according to (1.10) the natural definition for integrals

like (1.9) should be

—2—
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f f g ( i , r
1
, t ) d ~~( i

1
)d ~~( i )  p

( 1 . 12 )

f f  q( i
1,i

,t) d~~(r 1
) d B( i)  , t > 0

0 0  t
this has the disadvantage that it really is a two—dimensional integral , but not an iterated

one-dimensional integral.

To this end we present an extension of the stochastic integral which allows one to solve

equations 1~ ke (1.6) by iterating operators like (1.8). This extension is , roughly speaking,

the unique extension which allows integrals to be iterated one variable at a time, in the

usual fashion . Thus , for example , a formula like (1.11) becomes

l i t 
~ (T

1
)~~ (T

2
)d B ( T 1

)dB(r
2

)

( 1. 1 3)  0 0

t t
= if $ ( r ) d B ( r ) ) i f  p (r)dB (r)]

0 0

The distinction between our integral and that of Ito is clarified through the Correction

Formula (Theorem 3.A). Because of the ease of the calculations ensuing from our integral ,

many properties of stochastic calculus are revealed. For example , in §3 we present the F

Doob-Meyer decomposition for a class of nonanticipating processes. And we also present there

a discussion of integrals

t

f B (A(~ ))dB (r)
0

where 1 (r) > r. And in Theorem 4.B we provide a differentiation rule for processes

= F(t ,8(t)) , t > 0

where
t

F( t ,x ) = f ~(r , t ,x — B ( n ) d B ( r )  , t “ 0 x E R .

0

For a different approach to the Correction Formula the reader is referred to Meyer (Ill

u. 32 1-326.  And for other types of random integral operators , Bharucha—Reid 141 and TsokOS

and Padgett 113) are quite comprehensive .
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2. ADAPTED STOCHASTIC INTEGRAL

Let (D,3,P) be a probability space , and {B (t):t > 01 a Brownian motion on it. For

0 t
1 

< t
2 

let 3~t1
,t2
) denote the sub—sigma—algebra of .1 qenerated by

{B(t) B(t
1
) :t1 

< r ~ t2
}. A stochastic process (f(t 1

,t
2

) :0 < t
1 

< t~ } is said to he

L~ —adapted (with respect to B) if

(i) f ( . ,t
2

) is separable and measurable on (O ,t2), t2 
. 0

(ii) f (t
1
,t

2
) is 3(t

1
, t 2 ) —me asurab le, 0 < t

1 
c t

2

(iii) f ( t
1,t 2) s L

2 (fl ) , 0 < t 1 < t 2
t 2

( iv) 
~ 

f If (T,t2) 1
2dT < 

~~
, t 2 0.

If conditions (i) and (iv) are replaced by

(i)’ f(t
1,
.) is separable and measurable on 1t 1

,~’), t1 > 0

t 2
(iv ) E f I f ( t 1,t) 2

dr < ~~ , 0 < t
1 

< t 2
t
i

then f is said to be L2-adapted (with respect to B).

Ito (7) has defined the integral

t2f f ( t
1,

r) d B( r )
tl

for L2—adapted processes f, and its properties can be found in any text on stochastic in-

tegration. (See, for example, Arnold [1) pp. 64—88, Friedman [5) pp. 59-72, Gihman and

Skorohod (6) pp. 11—27 , McKean 191 pp. 24—29 , McShane 1101 pp. 102-152 , Skorohod [123

pp. 15—29.) We address ourselves to the problem of defining a new stochastic integral of the

form

t2

f f(r.t
2
)dB (~~)

tI

for L~-adapted processes f.

—4—
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To beqin with we tstablish the following result characterizinq L2—adapted processes.

2 . A :
t • t

~ i.n~ t . reqionn 

((~~ ~~) : t
1 

... r < t )  , () 1
1

For mv 1.2-adapted process f there e x i s t s  a unique sequence

2 ~~~~
; n 1 ,2 0 . t  ~~~~n 1 2  n - 1 —

sueI~ that , for 0 ~ t ,, f (t 
1’ t 2

) has the L
2 ( 

~ ) expansion

~ t 2 T n ~2
( 2 . 1)  F .f ( t

1,t 2
) + ~ f f . . .f  ~~ (t

1
,t2

;r 
l ’”~~’ 

T ) d~~(T1
)...dB (T

1
)dB (T )

n=l t
1 t 1 t 1

In part icular , for 0 < t
1 < t

2
,

( 2 . 2 )  f(t
1 .t2) E f(t

1
,t 2) + J ~ (t 1

,t ,t
2
)d~~(T)

where ~Gt 1
,i ,t ) is 3(t

1
,T)—measurable , a.e. I • 1t 1

,t2), and

( 2 . 3 )  £ J ~ (t , I ,t2) I
2dt < ~~, t2 

0, a .e. I 
~ 1t 1 . t 2

)

t 2
( 2 . 4 )  £ f ip (t

1
, T , t

2
) 1
2
d1 < ~~ , ~ t

1 
<

Proof:

By considering the Brownian motion

= ~Gt 1+ t ) — ~~(t 1
) ~ 0 < t < — t

1

the expansion (2 . 1) becomes a form of the homogeneous chaos , and follows directly from

Theorem 4 . 2  and Theorem 5.1 of I to (8)  . The uniqueness follows from Theorem 4 . 3  there. The

fact tha t f i s L
2
—adapted implies that for t 2 0

— 5— 



-‘

t 2 T  -)

U f ,(t ,r ,t 2 > dt di
0 0

t 2 t 2
F J  / ~~lt , T , t ) .’ 

2dr dt

t 2
F f I~

(
~
,t2~ 

2~~

f rom which (2.3) follows. Similarly,

U ;2 
~ (t

1
,t ,t 2

) ~
2
dT £ If (t 1,t2> 2

.

Since , in general, nothing can be said about the existence of a formal stochastic

differential 
~~~

f(t
i.
t
2

) ( i . e .  t .~ is held fixed) , it is necessary to restrict ourselves

to L~-adapted processes f for which such a differential does exist. That is, we require

that

(i) ~~~~
__ Ef(t1,t2

) exists, and -a-- ~~ ( t 1,t2) exists in L2(T ’ 2) 0 < t
1 

<

n = 1,2 ,...

( ii) The series 
~ ~

~~~~~F f ( t
1 , t 2 )+  ~ f f  f~~~~~~~~~~~ ( t t I  I ) d B ( 1

1
) . . . d B ( 1

1
)d $( I )

1 n= 1t 1 t 1 t 1 1

con verges in L2 h1) , for 0 < t1 < t 2 , to an L~-adapted process f0(t
1
,t2).

t ,t
(iii) ~i (t ,t ;t ,. ‘ 1  ex is ts  (as a trace) in L2(T 

1 2
) U) ~ t - t. n = 1, 2 ,...n 1 2 1 n—I — 1 — 2

( iv) The series 

~2 T n~ l ~ 2

~ I 1 .. ‘I ~ n
(t
i

t
2

t
l

T
l 

T
n_ i ) d 6 ( T

1
)
~~

•
~~

d8 (T
n_2

)d
~~

(T n_ i )
n—2 t 1 t

converges in L
2
(c~), for 0 < t

1 
< t2, to an L~-adapted process f’( t

1,t,
)

-6—
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Such processes f are said to be L2’1-adapted (with respect to B). The process f~ is

called the derived process of f, and we write

~t~~~
t
i
,t
2
)d8(t

1
)

f(t
1
,t
2
) 5 — 

dt 1

In many ways it behaves like a derivative . For example, if f is of the form

f(t1
,t2) F(B(t

2) 
— 8(t

1
) )  , 0 t1 

<

where F t C1(R) , then

f(t
1.t2

) = F ’ ( 8 ( t
2

) - 8(t
1)) , 0 t1 t2

In fact, if f is L~ ’
1—adapted, then 

~t
f(ti,t2) formally exists and is given by

f0(t1,t2
)dt

1 
— f(t

1
,t2

)dB (t1)

So that f~ is simply the negative of the diffusion part of it.

We now make the following definition. suppose f is an L~’
1-adapted process of the form

f (t
1
,t
2
) = / f f ~~(t 1

, t~~; T
1 

T
n)dB (Ti

)•
~~

dB (T n_i )dB (Tn
)

i
t
1 

t
i

2where ~~(t1,t2
) e L (T ) , 0 < t

1 
< t 2 . Then

t2
I f ( T , t

2
)d~~(I)

tl

is defined to be

T n

f f f ... f ~~(T
1
,t2

;T
2 ,...,

I ,I) d$ (T
1
)...d B(T

1
) d 8 (T ) dB(T)

tl tl tl tI
(2.5) t 2

+ J f~~(T ,t )dT
t l

The first term here exists since f is L
2
-adapted. We note that

—7—
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( 2 . 6 ,  F f f ( t ,t 2
)d~ ( t )  = F f f (T ,tj d T

t i 
t i

and that th is is .n~ro if n 1. Fuithermore , if f is an L2 ’ 1-adapted process of t~~c

form

t T I
2 m 2

f ( t
1
,t

2
) f f .. .f ,~ (t~~, t 2

; I )dB ( I )  . . •d i~ ~~m— l
1 di (t

m
)

1 1  ~l

- 2 ~~~~~
where m < n and ~i R , t )  L (T

m 
) ,  0 < t

1 
t2, th..-n

t 2 
t

2 _
F j f ( I ,t

2
)d~~tr ) 5 f (~ ,t2

) d~ (‘1
t i 

t i

t 2 
t 2

£ i f f ( T . t
2

) f (T , t
2

) dI + 5 f ( T ,t~~)dIf f ( T ,t)dT), m = n

t
i 

t
i 

t
l

= ~2 Tn—1 11

( 2 . 7) 5 5 ..
~~ 5 ~~( i ,t 2 ;T , i

1 
r~~~1

( r ~~, t 2 ; t
2 

T n j ) d T d T
1~~~~

d
~ n _ i~ 

m = n — 2
t
l tl 

tl

0 , otherwise .

In par t icul a r ,

( 2 . 8) £ 
2 

f ( )d~~( )  
2 

= £ i f lf(T ,t
2)1

2
dt + J2 r(r ,t

2
)dT~~

2
)

t I 
tl 

t
i

Using the above definition and Theorem 2.A it is now desired to extend this stochastic

integral to general L~
’1 -adapted processes f. To this end the following result is I~re-

sented .

Theorem 2.B~

There is a unique extension of the int eq ral

t
2f f ( r , t 2

) d $ ( r )
t
i

-8- 
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to a l l  L
2 ’1 -adapted processes f, sati s fy ~ nq the following continuity condition :

Whenever {f :n l ,2,...} is a sequence of L
2 ’ 1

—ada pted processes for w h i c h

u r n  £ ( J f  (t
1
,t

2
) 1

2 
÷ J f

0(t 1 ,t 2) J
2 

+ f
~~
(t
l
,t )) 

2~ o

t
2 sup 

2n~l,2 ,.. .U 1
~~~n

( tt
2

) I + I~ t , t
2

) ]dr  <

the n

t —

u r n  £ j f  f
n~~~

t
2~~

S
~~~ 1

2 
= o , 0 < t

1n-.~ t1

Proof:

For the ex istence of the integral it is necessary to establi sh the L2
( cl) convergence

of the series

~ t 2
(2.9)  

~ 
f f (-r ,t

2
)d5 (-r ) , 0 < t

1 <
nl  t

1

where f has the L
2

(cl ) expansion

f ( t 1,t2
) = £ f(t

1
,t
2
) + 

~ ~n i ’
~~~ 

, 0 < t
1 

<
n=1

and f is L2 ’ 1-adapted and of the form

f
n

(t
i~
t
2
) = 5 f 1 

~~~~~~~~~~~~~~ 
T
n
)dB (1

1
) . . .c3~~(~ 1

)d B ( r ) , 0 < t1 <
t
l 

t
i 

t
l

for n = 1,2 Here , as b e f o r e

t ,t
2

€ L
2 (T 1 ) ,  0 t

1 
< t

2 
; n = 1,2 

Consider first the series

(2.10) 

n
~
f
:

2 
f~~(I ,t )d.

— 9 —
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By assumption , the series

~ f~~(t ,t )
n 2I) I

tends to f (r , t
2

) i n  L~ (i~) for Large N, ~tt ,~ae ti point I , 2~ 
Furthe rmore ,

n~~l 
U 1f (r ,t2) 

2 
~ I~~ ’.~2> I 2. t

and , sLnce f~ is I,’—adai,ted ,

t
2

f F f~~
(1 , t

2
) 1

2d1
t l

Thus, by the theorem on dominated convt’rqene” , It:.’ ~:t’r~ es

N

~ I ~ I~1;~ .t2 1 2d:
n — i t 1

t 2
tends t o f U 1 1 (1 ,t2)I

2d1 for hir’j ’ N. Furthermore , by the Ceuchy—Schwartz inequality,

N ~2 
t 2

F 
~ 5 f ’ ( i ,t

2
)di — 5 f ’ (T ,t 2

) d11
2

n 1  t 1 
t 1

t 2
(t ,— 1 1

) 
~ f F If~(1

,t,) I 2d1
n=N +l

t 2
and thus t he se r ies  (2.10)  :otiv,’rq.’€; to 5 f (i , t , ) di in 4 , 2 (0)

t I 
-

Consider next the ~m rI.’i~

( 2 . 1 1 )  q ( t  ,t ., )

where

~2 ~ ,:+1 
I)

t .t j) - f f . . .f 
~~ 

(I
l . t 2

; I , 
~~~~ 

)dB (T
1
) .. .dt ~ (i ) d 8 ( r ~~~ 1

) ,  . t ,

i i  1

— 10—
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Since f° is L2-adapted it follows that

t I -I

g(t
1
,t2
) = 

~: ~~~~ 
(B(11)-B(t 1)1~~ (t 1,t2;I 1 In) (t

~ 
d i 1 B(r 1

t2 t2 t 12
+ / / / ...f 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~tl t I

and thus by the Cauchy-Schwartz inequality

t2
E I9~(t 1.t2) 1

2 
< 2(t

2
t
1}E t If 0 t1,t2 1

2 
+ (t2—t1)5 If~(t,t2) j

2dr)
ti

Since f0 is L~-adapted , the theorem on dominated convergence can be used as before to show

that

N

~ f 
£ If~(t,t2

) 2d’r
n=l t1

tends to E 1f0(r ,t2) 1
2th for large N. Hence the series (2.11) converges in L2(0). And

ti

now using (2.5) it follows that the series (2.9) also converges.

Concerning the continuity condition , the estimate

£ f f ( T ,t2
) d B(T ) 1

2 
< 2 E f

~ ( t ) d I
2

‘1 tl

+ 4(t
2—t 1

)E If (t1,t2) 
2

+ 4(t2-t1
)2E f°(I,t2)th1

2

shows that the integral we constructed satisfies this condition.

.

Some of the important properties of this integral are summarized in the following result.

— 1 1 —
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Theorem 2.C:

Let f , f be 1 ‘‘—adapted , in:! :;, t
a b +

Ia
(t
i• t 2

) 
~ 

f a u t
~
t 2 )

~~~~~ 
, 0 — t

1

t
2

I
b
(t

l .
t
2
) — f f

b
(T,t

2~~~B
(T) , 0 < t 1 

< t
2

Let a,b 8. Then

(a) (Linearity) 
~ 2 

laf (T,t2)+bfh
(I ,t2)1d~

(t) — aI (t 1,t 2 ) bl
b

(t l.t 2
)

(b) (Smoothness) I (t 1,t2
) is L~ ’

1—adapted , and 1° 0, I~ = f

t
2

( c )  U I
a

(t
l~

t2
) U f f ( r ,t

2
)di

(d) U I ( t
l
,t ,)Ib

(t
l.

t 2
)

t 2 
t 2 

t 2
— £ 1 5 f ( r ,t ,) f

b
( r .t 2

)dT + f  f~~(i ,t 2 )dif f~~(t ,t 2
)di )

t
I 

t
l 

t
l

t 2
+ £ f [ f ’ ( T .t

2
) g

b
(i , t

2
) + f~~(I , t

2
} q ( t , t

2
) ( d T

t 2
— U / f

a
( T

~~
t

2~~~h
( t

~~
t

2~~~
1

t
l

t 2
+ F 5 (f (T , t

2
)1

b
(T

~~
t

2
) + f ç ( r ~~t 2

) I ( T . t 2 fl dT
t
l

where
t

2
q (-r ,t 2

) — f F 
~
‘
a
(h

l
t
2~~~~~

T
l
)

t I 1.
2 n+ l 2

+ ~ 1 1 / ~ a ,n uu i
t
. t 2 1

) d 1 ) ( :
1

) 
~~~~~~~~~~~~~~~~~n=1 I I I

L 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _
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and the functions {~
p :n = 1,2,...) are as in Theorem 2.A. And g is defined analogously.a,n b

In part icular ,

t t

II (t 1,t2) 
2 

= F 
2 

1f 511 ,t2 1
2
d1 + I! 2

t
l 

t
i

t
2

+ 2 EJ  f~~(T ,t
2
)q ( i ,t

2
)dr

i f t
i

= Uf  If (I ,t ) I 2dr + 2 EJ f~~(T ,t ) j (I ,t )dt

Proof:

All four parts follow directly from Theorem 2 .A , using ( 2 . 5 ) , ( 2 . 6 ) , ( 2 . 7 ) .  (2.8) and

the observation
t 2

9a
(t
l~

t
2

) = I
a
(t

i~
t
2
) — f f~~(T ,t2

)dT

and similarly for

.

—13—
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§3. CORRECTION FORMULA

In this  section we present t he f o l l o w i n g

Theorem 3.A (Correction Formula)

Let f be L~
’1—adapted , and assume

t
2

I f(t,t)~~
2
dt

t
I

t2 tz f  5 If (t ,t)!2dr  dt <
t
l

t
l

Then
t
2 

t
2

I I f ( T ,t) d B( t ) d $ ( r )
t
1 
I

t
2 t  t

2
= 5 5 f ( T ,t) d B( r ) d B( t )  + f f(t ,t ) d t .

t
1

t
1 

t
1

Proof:

If f is a deterministic function, the result follows directly from (2.5). So let f

be of the form

I
t n 2

(3.1) f(t ,t) = f f / ~~(r, t ;t
1~ 1 )dB (1

1 
dB( n_i )dB (Tn

) , t
1 

I < t < t
2

where n > 1. Then by (2.5)

t t 
Tn+l 12 H

/ f(t ,t)dS (T) = 5 5 .•~J ~~(r 1 ,t;r 2,...,r ÷1)d8(t 1
)...dB (t )d8(r 1) H

t
l 

t
l 

t
l 

t
l

+1 f ( t ,t) dt , t
1

< t < t
2t

l

and thus

—14—
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‘I

t2 t

I / f ( I ,t ) d B ( t ) d B ( t )
tl tl

I 
T
n+l 1

1
— f J / . . .f ~ (r

3
,t;t~ I ~)d~~(i 1

) ...dB(T )dB (I )dB(I)
t
l tl t

l tl

t
2 

t
2

+ f f f ( t ,t)dB (t)dT
t
l 
I

Next let
t
2

g(T ,t
2
) — / f ( r ,t)d5(t) , t

1 
< I 

-~~ t2

so that

~2 ~~~~ 12
g(I,t

2
) — / J’ 

~ 
~
(I.In+l ;Tl I )d~~(-t 1

)...d~~(1 )dB (T I, t
1 

< I < t
2

Then by (2.5)

t2 t2

5 5 f (r,t)dB (t)dB (-r)
I

I 
tn+i 1

2
= 

t
1 ~ l ~l 

1
1
)dB (I

1
)...dB(r )dB (T )dB (t)

t
2

+ f g ( r ,t
2
)di

t
l

Since f(t,t) : 0 it is enough to show that

t
2

g 5 ( r ,t2
) = f f (-r ,t)d5(t), t

1 
i <

and this is clear by inspection . Thus the Correction Formula holds if f is of the form

(3.1). Finally, using Theorem 2.A and the continuity condition of Theorem 2.B, it fo l lows

that the Correction Formula holds for any L~
’1-adapted process f.

U

—15—
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The process

- f f(t ,: )d~~( 1 t

is. by Theorem 2.C, t7’1-adapted , and , as such , possesses a formal differential

:l
~~ ~(t1 ,t2

)
I

However, it is of greater interest to compute

~~ 
n (t

1
,t
2
)

2

since this is an Ito—differential (not lust a formal notation), and

~(t1
,t
2
) = 

2

The Correction Formula can be employed to this end .

Th eorem 3.B :

‘ 1Let f be ~~ -adapted and set

t
2

r t ( t 1
,t

2
) — ~~ T ,t2~~~~~~

T) .

Suppose

f(t
1
,t
2
) — f (t

1
,t
1
)

t
2 

t
2

= f a ( t 1, r ) d r  + f b ( t
1
,T) d B( I) ,  0 < t

1 
< t

2
t l I

where a, b are L2’1-adapted processes satisfying

T

UI J tta (t 1 ,t2) 1
2 

+ Ib(t 1.t 2 I
2Idt 1dt 2 < , T 0

I tb (t .t)  2dt 
~“ , T 0

Then

-16-
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t
2

at n(t
1.

t 2
) = (b ( t

2
,t
2
) + / a(I,t

2
)dB (-r))dt

2

t
2

+ [ f( t
2

, t 2
) + 5 b(I,t 2

)d B ( r ) ) d B ( t
2

) , 0 < t
1 

< t
2

t
l

Proof:

The theorem follows directly from the Correction Formula. Indeed ,

t

f [b(~~,r) + f a (T’~~r)dB (I’)1dI
t
i 

t
l

t
2 1

+ f ( f ( - r , -r ) + / b (r’,r)dB (r ’))dB (r)
t i t

l

t
2

= f f ( r ’ , T ’ )d ~~( r ’)
t
l

t
2 

t
2 

t
2

+ / (5 a ( r ’,r )d i  + f b ( r ’ , T) d B ( T ) ] d 8 ( r ’ )
t
1 

I’ I’

S 
t
2

S 
= / f ( T , t

2
)d~~(T ’ )

t
l

U

It is worthy of note that although the process (here t
1 

is fixed)

t

x (t) = / f(-r , t ) d $ ( T )
t
l

is not a mar tingale , the Correction Formula does provide its Doob-Meyer decomposition . Thus

i f

t
2

f ( t
1,t2

) = f  p(t
1
,T ,t 2

)d~~(i)

1

-17—
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( c f .  Theorem 2.A), then

7 f ( 1 , t) d ~~( T )

t
l

(3.2) 1 tf ~ ( r
1
,I ,t)dB(t

1
))dB (t)

t
i 

t
i

t
+ f ((t ,i ,t)dl

t
l

For example, the decomposition for

t
8(t) / f(:)d5(I)

0

is

t I t

I E B ( t ) f ( I )  + / f(11)dB (11) ldB(r) + J f~ t)di
0 0 0

As another application of the Correction Formula , let A(t) be a strictly inc reas ing

differentiable function of t on (t
1
,t2

) w ith

(3.3) A(t) > t , t
1 

< t < t
2

suppose we were to define , for t1 
< I < t ~ t2

,

(1 , t < A ( T)

f ( r ,t )  =

L. 0 , t A(r )

and substitute this in the Correction Formula. Then

A
1(t 2

) t
2

I B (A (I))dB(t) + / 8 ( \ ’( T ) ) d ~~(I)
A (t

1
)

(3.4)

B (t
2
)B (A

1
(t
2
)) - lt(t

1
)8(A(t

1
))

-18-
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This is an integration by parts formula. Of course the difficulty here is that f is not

L~
’1—adapted. But in this case (since f is deterministic) the Correction Formula can be

verified directly from (2.5). In fact, as long as the process

g(I,t2
) — f f(It)dB( ) , t1 

< I < t
2 

,

has a der ived process g 5, then

t
2

/ g(I,t
2
)d8(I)

tl

t2 t  t2
= / / f(I,t)d$(I)dB(t) + / g ( r , t

2
) d r

t
l
t
l 

t
l

Now we check that

— 8(1) , t
1 

< I < A~~~(t
2
)

g(I,t
2
) = 

—l
1¼. 
8(t

2
) — 8(1) , A (t

2
) < I < t2

Because of (3.3) it follows that g s 1. Thus (3.4) is established. However, a more diffi-

cult question involves the case where

(3.5) A(t) > t , t
1 

< t < t
2 

,

and the strict inequality (3.3) no longer holds. Here we have

1 i ,

g ( r ,t
2
)

1 — (1 A i’ll)) , A ( t )  -r

Thus we arrive at the following extension of (3.3).

A ’(t
2
) t

2

S 8 (A(T))dB (r) + 5 B (A
1
(T))dB (T)

t
1 

A (t
1
)

(3.6) = B (t
2
)8(A

1(t
2
)) — B(t

1
)8(A (t

1
) )

— / (1 a X ’ ( r ) ) d T
A

-19-
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where A is the set { i  c (t
1
,t 21:A (r) — I). Now we merely  note tha t

- JA~~ 
a A ’ ( r ) ) d l  — fA~

T

and we arrive at the following:

Theorem 3.C (Integration by Parts) :

Let A (t) be a strictly increasing differentiable function of t on (t
1
,t2 ( ,  wi th

A (t) > t , t
1 

< t < t 2

Let A be the set {t t (t
1
,t
2
]:A(t) = t}. Then

A
1(t

2
)

I B (A(I))dB (T) + / 8(A
1
(1))dB(I)

t
1 

A (t
1
)

= B(t2
)B (A ’(t

2
)) - 8(t

1
)8(A (t

1
)) - £(A )

where ~ is Lebesgue measure.

Similar technique s like those used to establish Theorem 3.C can be used to generalize

the Correction Formula for functions f defined on

S {(I ,t) :A
1
(t) a t

2 
< t < A~~(T) a t

2)

where A
1
. A2 

satisfy the conditions of Theorem 3.c, and A 1 < A~~. We merely extend the

function f defined on S to the whole triangle , t
1 

< I < t < t2 , by setting it to zero

on the complement of S. The reader can check that

//sf ,t
~~
8(t

~~~~~
t)

(3.7)

+ 1A~~
t
~
t
~~

t

where

A — S n ((1 ,t ) : I — t} .

—20 -
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~4. CARAT1IE000RY PRINCIPLE

A particularly interesting class of stochastic processes are those of t h t -  form

f (s-
1
,t 7) = ~(t1

5 t
2
,B(t

2
) — 8(t

1
)) , 0 t

1 
t
2

The condit jo::: for f to be L’~—adapted ar~

2
x

(4.1 ) J ~(t
1
, t ,,x) 

2e 
2(t

2
-t

1
) ~ 

, o t
1

-~ ~~~1 I~(~ t ,’x) I 2(t -t)
( 4 . 2 )  5 5 - ~~

___
~~
_ e 

2 dr  dx ~ ~
- , t 0

— =‘o ~t — ~ -

And the cond itions for f to be 17’1-adapted art’ that the functions

f ~(t 1
,t 2,x) , (

~~~ + ~

also satisfy (4.1) and (4.2). For such processes f the integral

t )

/ f ( I ,t) d)~ ( T )
t
i

can be related to an Ito stochastic integral. In fact we have the following resu l t :

Theorem 4A  (Caratheodory Principle) :

Let f be an L’’
1
-adapted rroc~ ss of the form

f(t
1
,’-~~) = ~~t 1

,t
2
,8(t2

) — 8(t
1

) )  , 0 t
1 

< t
2

Then

f ( T ,t ) d 8 ( T )  = F ( t
1
,t 5 ,;~ ( t

2
) )  , 0 ~~~~ < t ,

t
l

where

F(t
1
,t
2
,x) — / •(t ,t ,x — $ ( I ) ) d ) 3 ( I ) , 0 < t

1 ~ t > x ~ R

1

L. 1
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The proof relies on the following two lemmas.

Leituna I:

Let H be the Herinite polynomial of degree n , where n > 1. And let a(t
1
,t
2

) be

differentiable in t
1 

and satisfy

I~ 
i f a (t,t2) 

2 
+ a - r , t

2 

2
1dT , t

2 
0

Then

t
2

I a(r,t
2

) H
n
(t
2
_T,B (t

2
)_8 (r))d8 (T)

t
l

= 

~ i 
a(t

1
,t
2

) H
n+1

(t
2
_t

1
.8(t

2
)_B (t

1
) )

t
2

- 

+ ;:;+i- a (T .t 2 ) H n+j ( t 2
_ r ,B(t 2

) _ 8 ( r ) ) dr

t
2

+ n / a ( r , t 2 )Hn 1 ( t 2
_ r

~~
8(t 2

)_ 8 ( I ) ) dr , 0 < t
1 

< t
2

ti

Lerimia II:

Theorem 4.A holds for functions $ of the form

$(t1
,t2,

x) = a(t
1
,t
2
)H (t2—t1

,x)

where a satisfies the conditions of Lemma I.

Proof of Lemma I:

The proof relies on the fact that

H (t —t ,8(t )—8 (t I)
n! n 2 1 2 1

(4.3) t2 
I 1

2

= 5 / ...I d8(’t
1
)••~ dB(t 1

)d8(t ) , n — 1,2

t
l
t
l 

t
l

These polynomials are defined by 2 2

H (t,X) — ( -t ) ° e~~~-~-~ e , n = 0,1,... ; t > 0: x • R

-22- 
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(A very short proof of this result appears in McKean 19) P. 37.) Thus, by (2 . 5)

t
2

~~2 ‘n+i 1
2

= / I .../ a( I
1
, t ,)d8 (T

1
)...:~~ (t )dB (T )

t
i 

t
l 

t
i

t t i2 2 n—l
+ f a (r, t 2 )/ 5 . . .f  d

~~
(T

i
)
~~

•
~
d8 (Tn_ 2 )d~

(I n_ i )dT
t
l 

-I I I

t
2 

1~~~~ T~

— a(11 ,t2)/ / ~~ d~~(t 1
) ~..d~~(1 )d~~( 1 )

t i t i t i

I t I IL + 

2~~~ 
a( i , t 2 )f  

‘ n+l 

f d
t
1 T i  I

12 12 tn l  12
+ 5 a(r.t ,)/ 5 . . .f  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~t
1 

I I I

-

t
2

+ (n+l)! ~~ 
a (t .t

2
) H ~~~1

(t
2~~

T,8(t 2
)_
~~(I))d 1

+ 
(n-l)! ~~~~~~ T,t 2 0_1

(t
2

T , t
2
)_ TfldI

from which the desired result follows.

U

Proo f of Lemma II:

Let

- -
~~ \~~( t

•A (t l t 2 .~
c) — a (t

1 ,t2)e 
‘ 

, 0 < t
1 
.. t 2 ; \,x ~ R
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Then (evaluate the Integrall ) 
I 

-

t
2

FA (t l .
t
2.x) — J ,A , t2,5 8~~~~~~~

t
_
)

t
i

1 1 
\ (x—8(t .,)1

— X A 1t l
,t2,5~~~

tl)) 
— aC t :t 2

)e

t 2
+ Af .~~(t

2
1 ,x

~~~~~~~~~
1

tl

I 
~2 A (x-8~~)) - ~ l~~( t

+ j- -5-:~ 
a ( i . t 2 )e d i  • 0 t~~ : S •

and thus

r x (t i .t 2 .B (t 2 ) )  - } A
( t

l
,t
2
,8(t

2 
(t

1
) )  - ~ a ( t

,~~
t~~)

+ AJ x
(t a

, t 2
)_ 8

~~~~~~
1

A(B (t )-8(i) - 
1 \ ( t  i- : )

+ 
~~ 5 -~~~

. a C i  ,t
2
) (. 

2 2 . 
-liii: , :1 I t~ ,

t
i’

On th. other hand ,

x(t i . t 2 .~ 
— 
nL 

~j.a(t1.t2
)H~ ( t

2
_t
,.X) . 0 . t 1 

t~~ x

and thus , by 1.5155 1.

t2

tl

= 
A A

(t l.t2
,8(t2

) 8(h )) - ~,
- a ( t

1
,t ,)

t 2 Xtt1 (t ) 8 ( ) — 
1 \~ (t  - - i )

1 ,  ~ 2 2
+ 

~~ 
j ~~- -  a( I , t 2) ( e
t 1

t 2
+ A~( A

(t2 1.8(t2
) 8 ))ii: , 0 t

1 
I ,

-24-
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And from this it follows that Theorem 4 .A  holds for (~~~:A  ~ R};  that is ,

t
2

I ~A
(t
2
_ T ,B(t

2
)_8(T tfl3(h) = F

A
( t

l
.t
2
.e(t

2
) )  , 0 < t

1 ~ t2 
; c R

t
l

By d i f f e r e ntiating this  equation n t imes wi th respect to A , and setting A = C , it

follows that Theorem 4.A holds for the function

~(t1
,t
2
,x) = a (t

1
,t
2

) H
0
(t

2~
t
1
,x) , 0 < t

1 
< t

2 
; x • R

U

Now we are in a position to present the

Proof of Theorem 4.A:

Let ~ satisfy (4.1) . Then , because of the completeness of the Ilensite polynomials ,

there exists a unique sequence {a (t
1
,t
2
):n = 0,1,... ; 0 t

1 
< t

2 
such that

+(t
1
,t
2
,x) = 

~ 
a
n

(t
i~
t
2

) H ( t
2
_t

1
,x) , 0 < t

1 
< t

2 
; x P

n=0

in the sense tha t 
- ________

N 2(t —t
u r n  / 14 (t ,t ,x)  — Y a (t ,t )1I (t —t ,x)1

2
e 2 1 

dx = 0 • 0 < t t1 2 n 1 2 n 2 1 — 1 — 2n 0

Furthermore , since

H ( t ,x ) = n H ( t,x) , n = 1,2 - t ‘. 0; x • R
~x n n-i —

it fo1lows tha t i f  -
~~

- 4i(t
1
,t
2
,x) satisfies (4.1)

then

-
~~

— c~~( t
1

,t
2

,x)  = 
n~~O 

a ( t
1
,t

2
)-~ — H(t

2
—t

1
,x) , 0 < t

1 
t
2 

; x R

in the same sense . Finally, s ince

— 

~ 2 n ~~~
’
~~ 

= - n(n-l)H 2
(t ,x) , t > 0; x ~ R

it likewi se follows that if (-~~— + ~~ 
-

~
-

~~)~~~( t
1

, t , ,x )  s a t i s f i e s  (4.1) then

—‘—---- —.——,
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+ ~~
- -
~—~ ) $ (t

1
,t~~,x) = 

n=O ~ 
+ 

~~ ~~~~~~~~~~~~~~~~~~~~~~

0 t
1

< t
2 

; x c R

in the same sense.

Now we define for n = 0 ,1,...

fn
(t
1
t
2) = a

n
(t
i.
t
2

) H
n

(t
2
_t

i
,8(t

2
)_ .B (t

1
) )  , 0 < t

1 
< t

2

Because of (4.2) and the continuity condition of Theorem 2.13 it follows that , for

0 ~ t
1 

< t
2
,

t
N 2

‘ / f
n
(Tt

2~~
8(1)

n=0 t

t2
tends to / f (T ,t 2

)dB(T)  in L
2 (ll ) for large N. Furthermore , if

t
l

t
2

F(t
1
,t2 ,x) = / a (i,t

2
) H (t

2
— -r, x—8 (-r))dB (-t)

t
l

n = 0 ,l . O~~~ t1
< t

2

then
N

F (t  ,t ,x)
n 1 2n=0

tends to F(t ,t ,x) in L
2
(c)), in the sense that

1 2  
2

- - x
N 2(t —t )

l im / E lP’(t1,t2,,~ — 
~ ~~~~~~~~~~~ 

2
0 

2 1 dx = 0 , 0 t
1-~~ n 0

2
x

N 2(t —t )
u r n  f U l~~ 

F(t
1
,t
2,
x) — 

n=0 
~~ 

F
n

(t
i~
t
2~~~ 1 2e 2 1 

dx = 0 , 0 t t
1 

< t
2

Since these conditions imply that
N

X F
n

(t
i~

t 2 •8 ( t 2
) )

0—0

—26—
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tends to F(t
1
,t
2
,8(t2)) in L

2 (c?) for large N, 0 s t
1 

< t
2
, and since , by Lensna II,

for n — 0, 1,...

t
2

1~ ~~~~~~~~~~~~~ = F ( t
1
,t
2
,8(t

2
) )  , 0 < t

1 
t
2 

,

1

the proof of Theorem 4.A is complete.

U

As a corollary of Theorem 3.B we present the following result.

Theorem 4.8:

Let
t
2

n (t
1
,t
2
) = / ~ ( T , t

2
,8( t

2
) —

t
l

where
2 2

4~( t
1
,t
2
,x), -

~~

— $(t
1
,t~ ,x), (-

~
-—— + -~

- —~--~-)I~(t1,t2,x), 
(-
~~

—- + ~
- 1 3x 2 ~x

satisfy (4.1) and (4.2) . Then
t
2

~t2
n(t

i
t
2

) = [~~(t 2,t2,
0) + f -i-. •(- r ,t 2 ,8(t~ ) —

2
+ (-j- 4i(t

2
,t~~,0) + f (-a— + ~ -~—~ ) 4 ( - t ,t 2 ,8(t 2

) — B(t))dB(r)ldt
2 

, 0 < t
1 

< t
2 

.

Proof:

The result follows directly from Theorem 3.B once we observe that , by Ito s Formula,

— 8(t
1

) )

I
~~— I~~(t 1

,t
2

, B( t
2

) — 8(t
1
))dB(t

2
) + ~~ + ~~

- —j-)~~ (t
1~~

t
2
.8(t

2
) — )3(t

1
) ) d t

2
— 2 ~x

U
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~5. ITO-~~LTERRA EQUATION

In this section we study the behavior of the solution to the problem

t t
(I—V) ~(t) — 5 o(- r .t)~~(- r ) d8( r) — 5 b(~~,t)r,( r)d- r  — F ( t )

0 0

where a, b, F are functions. A more general class of equations is analyzed in Berger (2]

(3]i but to make this exposition self—contained , the existence—uniqueness results for (I-V)

are presented here.

Theorem 5.A:

Let 
~~
. b, F be functions satisfying

0 < t1
< t

2 < T t ° 1
,t
2

0 < t
1

< t 2 
< T 

(t
1
,t
2
) 1
2 lIbli T

SUP 
II FJJ T < 

~~

for each T > 0. Then there exists a solution ((t) of (I-V) on 10,T] for any T ~ 0

such that

(5.1) 
0 < t <  T ~ ~(t) 1

2 
<

Furthermore , if F (t) is another solution of (I—V ) satisfying (5.1), then 1~ is a version

of ~.
Proof I

To establish existence we construct the successive approximates to (I-V) . Thus let

— F(t) , t > 0

t t
(5.2) ~ Ct) — F ( t )  + f a(r,t)~ 1

(t)dB(’r) + 5 b(-r ,t )~ ( t~~~ 1.
n 0 0 

—1

n — 1, 2 , . . .  ; t > 0
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The f i rst proper ty of these itera tes we establ ish is

(5.3) 
0 ~

s
~
P

:_ T U 1~~n
(t) 

2 
n = 1,2 T > 0 .

This is shown by induction as follows.

0 < t ~~ T 
£ ~~ (t) 1

2 
3ll F~I

2 
+ 3N

T 0 < t < T 
U I~0 1 (t1 2 

• T > 0

where

N
T 

= 0 < t ~~ T~J~ 
lo (r,t) 1 2d1 + tf Ib (T, t) f

2th] , T > 0

The next property we establish is

n
(2M

( 5 . 4 )  
T ~ ~n+i

(t )  — 
~n

(t
~~ 

2 
< 2N

T
(l  + lI F ll ~

) n! T > 0

where

M
T 

= kIl T + T II b lI~,

This is shown by the following observation

U I~n+i
( t )  - 

~n
(t )I

2 
< 2N~f U 

~n
(T )  — 

~n_ l ( T ) 1 2dt n = 1,2 o < t < T

Thus , by (5.4), for each t E (0 ,T3 ,  the sequence 
~n
(t) converges in L

2
(l() to a random

variable ~ (t). The process ~ ( t) is ~~(0,t)-rneasuraiile and

0 T U kt 1
2 

<

Since

T ~~ ~n
(t )  — ~ ( t )  ~2 0

taking limits in ( 5 . 2 )  is valid , and ~ (t) is, therefore a solution of ( I — V ) .

To establish uniqueness let ~ ( t )  and ~ (t) denote two solutions of (I—V) satisfy ing

(5. 1). Then

-29—
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U I~ t - ~~ t )  1
2 

< 2 Mf E IC (i) - ~ (i) t
2
dT

and thus

U k t  - 
~(t) 1

2 
= 0 , >

U

The successive approximates (5.2) are particularly interesting in view of the Correction

Formula. In fact the solution to (I-V) can be represented as an adapted stochastic integral .

This is the content of the following

Theorem 5.8 (Resolvent Formula) :

Let ci, b, F be as in Theorem 5.A , and also satisfy

(5.5) 
0 < t

1
< t ~ c T ~~~~ 

0(t
1
,t
2
) ~
2 
+ 

~~ 
b(t

1
,t
2
) 1

2 ] < = • T -, 0

(5.6) - 0 T I~ - P ( t) 1
2 

< ~~ , T > 0

Define the iterates a~~ bn as follows :

= ci (t
1
,t
2
) , b

1
(t
1
,t
2

) = b (t
1
,t
2
) , 0 < t

1 
< t

2

t
2 t

2

/ o (t
1
,T)ci(-r ,t

2
)dB (-r ) + 5 o ( t

1
,-r)b(1,t

2
)d1

t
i t

l

t
2 t

2
b

1
( t
1
,t
2
) = 5 b

n
(t

i~~
T ) O ( t

~~t 2
) dB ( ~t )  + f b ( t

1
, -r ) b ( -t , t

2
)d-r

tl 1

n = 1,2,... ; 0 < t
1 

t
2

Then the resolvents

- 

r (:
1
,t2) = 

n~ l 
O
n
(t
1
t
2
) • r

b
( t
l
,t 2

) = 
n~ 1 

b (t
1
,t
2
) , 0 < t~ < t

2

exist and are L
+ -adapted processes. Furthermore the solution to (I-v) is
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t

~ ( t )  = F(t) + 5 r ( t , t ) F ( r ) d B(- r )
0 0

(5.7)

+ f Lr~~(t, t) - ci (i,i)r (i,t))F(t)di , t 0

Proof:

This result is actually a corollary of Theorem 5.A. Indeed , by the Correction Formula ,

it follows that the successive approximates 
~ 

are given by

~~ ( t )  = F ( t )  + f I ~0 k=l

(5 8) t fl n—i
+ / [ 

~ b ( r ,t )  - 0(1,1) 
~

0 k=l k=i

n — 2 ,3... ; t > 0

Thus the convergence of the approximates implies the existence of r , r
h
. The condi tions

(5.5) and (5.6),. together with the continuity condition of Theorem 2 .13, allow us to take limi ts

in (5.8).

U

Actually , because of the restr i ct ive  r? assumptions on ci, b , the convergence of the

approximates 
~ 

is almost sure convergence. This is because there exists a function C ( t )

such that

U kn+i (t >  — 
~n

(t) 1
2 

-~~ ii! 
, >

This is actually the content of (5.4). And thus the series

n~ 1 
~ l~ +1

(t )  - 
~n

(t )  I > -
~~~~

converges for t > 0. So tha t by the Borel-Cantelli Lemma , ~~ (t) converges almost surely

—31—
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for each t ~ 0. Similarly the conditions (5.5) and (5.6) imply the almost -~ur,- e~J : v r o- r1 -~-

of the terms in (5.8). And thus the Resolvent Formula provides trajectory-type information .

For examples concerning the use of the Resolvent Formula, and for additional information

about the solution of (I—V) , and for the case where ci, b, F are processes themselves, the

reader is referred to Berger (2 ) ,  13) .

4
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